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ABSTRACT

An analytically linearized model for helicopter flight response
including rotor blade dynamics and dynamic inflow, that was recently
developed, has been studied with the objective of increasing the
understanding, the ease of use, and the accuracy of the model. The
mathematical model is described along with a description of the UH-60A
Black Hawk helicopter and flight test used to validate the model. To aid in
utilization of the model for sensitivity analysis, a new, faster, and more
efficient implementation of the model has been developed. It is shown that
several errors in the mathematical modeling of the system have caused a
reduction in accuracy. These errors in rotor force resolution, trim force and
moment calculation, and rotor inertia terms have been corrected along with
improvements to the programming style and documentation. Use of a trim
input file to drive the model is examined. Trim file errors in blade twist,
control input phase angle, coning and lag angles, main and tail rotor pitch,
and uniform induced velocity, have been corrected. Finally, through direct
comparison of the original and corrected model responses to flight test data,

the effect of the corrections on overall model output is shown.
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CHAPTER 1
INTRODUCTION

Progress in helicopter technology requires progress in the ability to
analyze those helicopters. In both the initial design phases and the
modification phases of helicopter development, the engineer must be capable
of accurately modeling his design to observe the behavior of its various
components. The aeroelastic and aeromechanical stability and control
response problems in helicopters are of particular interest and, unfortunately,
tend to be among the most complicated problems faced by dynamicists.
Studying the stability and control response of a helicopter presents the
designer with a number of challenges that do not affect the designer of fixed
wing aircraft. The interaction and coupling between the rotor system
dynamics and the helicopter body dynamics presents a problem that is usually
modeled by a system of complex nonlinear equations. Although there are
several ways to handle these nonlinear equations, many are not adequately
suitable for stability and control analyses and do not provide a physical
insight into the problem. An analytically linearized model of the full
dynamics of the nonlinear system, however, does have a great potential in
this area. This research further examines, clarifies, and corrects a unique
mathematical model [1] developed several years ago, that may be suitable for
many of these types of analyses.

Historically, helicopter analysis has often been based on a quasi-static,

rigid body stability derivative model in which the blade dynamics are

1
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neglected. Rotor flap and lag angles are determined from the instantaneous
values of body angular and translational displacements as well as body rates
and accelerations. For many applications, such as low frequency response and
steady state flight behavior, this approach is adequate and is sufficiently
simple to promote a physical insight into the problem.

However, back in the early 1950's, there was doubt as to the capabilities
of the quasi-static model. Ellis [2] found that due to the neglecting of the
strong influence of the rotor dynamics, the conventional quasi-static stability
derivative model was not capable of representing higher order, short period
dynamics. More recent studies by Hansen [3] found that the flapping
dynamics, which are neglected in the quasi-static model, were very important
in stability derivative determination.

It has also been determined that the quasi-static model may not be
adequate for the development of feedback control systems. Curtiss (4] found
that the high frequency modes associated with the body-flap coupling and the
lag degrees of freedom limited the rate and attitude feedback gains used in
attitude control systems. This was not predicted by the quasi-static
formulation. Hall [5] showed that, for tight control (high gain), neglecting the
rotor flapping dynamics in the design of the feedback system resulted in
unstable closed loop responses when the flap dynamics were included. Zhao
[1] discovered that the lag dynamics, as well, caused instability in the closed
loop response if they were neglected in the design of the feedback control
system.

Additionally, several researchers (Curtiss and Shupe [6], Gaonkar [7],
and Chen [8]) determined that inclusion of dynamic inflow is important in

modeling the helicopter. The dynamic inflow was found to produce
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significant changes in the response modes due to the influence of the low
frequency unsteady aerodynamics.

The shortcomings of the quasi-static formulation for stability and
control analysis becomes even more severe as helicopter technology
progresses. Super augmented, high-gain flight control systems are being
developed for military helicopters in order to meet the requirements of
demanding mission tasks such as low level, nap-of-the-earth flight. The rotor
designs are shifting to more hingeless and bearingless systems which tend to
be more prone to rotor-fuselage mechanical instabilities. In addition, the fly-
by-wire and fly-by-light control systems being developed are so fast and so
responsive that the modeling of rotor blade dynamics becomes an essential
component of the modeling process. The obvious conclusion is that the true
physical behavior of the highly coupled rotor-fuselage dynamical system can
only be fully captured by developing a model in which the influence of the
coupled rotor-body motion is properly incorporated and for which the effects
of unsteady aerodynamics are accounted.

One solution to deal with these problems results in a system consisting
of nonlinear ordinary differential equations with periodic coefficients.
Sikorsky's GENHEL [9] is an example of such a nonlinear program. Although
this model can provide a reasonable simulation of the dynamic response of
the helicopter to time varying inputs, the complication level is so high that
gaining a general understanding of the system or a physical insight into the
problem is very difficult, if not impossible.

An excellent alternative solution would be a carefully linearized
description of the nonlinear equations about a steady-state trim condition.

This would provide for analytical simplicity and could be used as a basis for
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the design of feedback control systems. This linearized system would be
especially attractive if it could be shown to agree with experiment.

Recently, a linearized model was de-ioped by Zhao [1] as part of his
doctoral research in Aerospace Engineering at Princeton University. The
generic model, which is capable of representing any single main rotor
helicopter, uses an analytically linearized form of the eqtiations,
incorporating rotor dynamics and dynamic inflow effects. This provides for
the accurate representation required for the stability and control analysis of a
helicopter. To ensure that the model was properly representing true aircraft
response, it was compared to flight test data. The simulation showed very
good agreement with a UH-60A Black Hawk helicopter for both hover and
forward flight speeds. This particular aircraft was used for the validation
because high quality flight test data were readily available [10]. MacDonald
performed further research [11] on this generic model with the goal of
improving the correlation of Zhao's model to flight test data through the
correction of modeling errors and application of an analytical study.

The present research continues the development and improvement of
this generic linearized model with several overall objectives. The full system
model, the quasi-static simplified version, and the incorporation of dynamic
inflow terms is clarified and documented to aid in further research and
development of the program. The UH-60A Black Hawk flight test data are .
clarified and described with an emphasis on subtleties or irregularities that
impact simulation of the flight conditions. Also, the user interface is
improved in order to facilitate expedient sensitivity analysis used in the
further development of the model. The main thrust of this research,

however is to correct modeling errors in order to improve the accuracy of the
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model and to improve the understanding of the inputs required to drive the
simulation. This last part is accomplished through sensitivity analyses of the

model response to variations in selected parameters.



CHAPTER I
THE ANALYTICALLY LINEARIZED HELICOPTER MODEL

2.1 Generation of the Model

The mathematical model created by Zhao [1] develops equations of
motion based on a representation of a helicopter that includes a fuselage, an
empennage consisting of a vertical tail, a horizontal tail, and a tail rotor, and a
main rotor system maintained at a constant speed that consists of one hub
and a number of blades associated with that hub.

Each blade is assumed to be a rigid beam that undergoes flap (vertical)
and lag (inplane) bending. Torsional bending, however, is not included. The
aerodynamic load on the blades is modeled using quasi-steady strip theory.
The rotor hub is modeled as an articulated system with offset hinges, but the
flexibility of the model allows other hub types, such as a hingeless or
bearingless hub, to be modeled by the inclusion of the proper combination of
a hinge offset and flap and lag springs. In addition, longitudinal tilt of the
rotor shaft, pitch changes due to fuselage deformation, and the effects of a 83
or a a2 hinge can be taken into account. Dynamic stall and reverse flow
effects are not modeled. A simplified model of the tail rotor allows for coning
of the blades but not for cyclic flap. It also allows for incorporation of a 33
hinge and a canted tail rotor shaft.

In order to properly couple the rotor with the rest of the helicopter, the
equations for each blade are first developed in a coordinate system that rotates

with the hub at a constant speed. These equations in the rotating coordinate
6



7
system are then transformed to the non-rotating system to be combined with
the other blades and with the fuselage. Although this is actually just a
transformation of coordinate systems, the mathematics involved can become
quite lengthy and prone to algebraic errors.

Fortunately, the development of symbolic computer languages for
general computer systems allows the development of the system dynamic
equations directly on the computer. Zhao utilized a symbolic generation
system called REDUCE, running on an IBM mainframe computer at the
Princeton University Computing Center to develop the equations for the
model. An added benefit of the REDUCE system was its ability to output the
equations in program-ready FORTRAN code, again avoiding a source of
errors. The equations were then checked with the symbolic system
MACSYMA at the Laboratory for Control and Automation at Princeton.

Finally, the complete nonlinear dynamic description of the multi-
dimensional system, formulated by a Lagrangian approach, is converted to a
set of linear second-order differential equations. This is accomplished
through a perturbation analysis performed on the nonlinear equations, and is
described later in this chapter.

One of the greatest strengths of this model is the fact that by using
symbolic manipulation, the final linear equations are strictly analytical and
not numerical. Thus, the equations are applicable to any single main rotor
helicopter in any trim flight condition without further modification. This
allows a great flexibility in using the equations to study various helicopters
and flight conditions by simply changing the values in a trim input file.
Additionally, studies of the sensitivity of the helicopter (or the model) to

slightly differing trim conditions can be quickly and easily performed.



2.2 The Lagrangian Formulation

A Lagrangian formulation is based on a set of generalized coordinates
that correspond to the degrees of freedom of the system. For this particular
helicopter model, the appropriate number is twelve: six degrees of freedom
for the rotor system and six degrees of freedom for the fuselage.

Each blade has one flap and one lag degree of freedom. However,
when converting from the rotating frame to the fixed frame through the use
of multi-blade coordinates, six degrees of freedom result; three flap and three

lag degrees. Figure 2-1 graphically defines the flap degrees of freedom. These

Y=180° ¥=0° y=270°

a9_._\../

Figure 2-1: Rotor flap degrees of freedom.

three values correspond to the standard formulation for the flapping

equation (NACA notation) as found in the literature [12],
B = ag - aj cos(¥) - b1 sin(¥). (2.2-1)

B is the total flap angle, positive in the upward direction. ap is the part of the
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flapping angle that is independent of blade azimuth angle ¥. Itis also
positive in the upward direction. The coefficient aj represents the amplitude
of a pure cosine motion for longitudinal tilt, positive for a flap back, and b
represents the amplitude of a pure sine motion for lateral tilt, positive for a
flap down to the right.

In a similar manner, the three lag degrees of freedom are graphically

defined in figure 2-2. Again these values correspond to a standard

by I
T % ° —

Figure 2-2: Rotor lag degrees of freedom.

formulation for the lag equation,
£ = Lo - Y1 cos(¥) - Y2 sin(¥). (2.2-2)

{ is the lag angle, positive for lag (motion opposite to rotation). Lo is the
steady state lag which is positive in the same direction. The coefficient T
corresponds to the lateral displacement of the center of mass (c.m.) of the
rotor system due to asymmetric lag, positive to the right. Finally, v
corresponds to the longitudinal displacement of the rotor system c.m.,
positive forward.

Six degrees of freedom are associated with the fuselage as well. There

are three translational displacements in the lateral, longitudinal and vertical
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direction. There are also three rotations in pitch, roll, and yaw. Due to a
somewhat unconventional axis system used in the derivation of the model,
the body forces and moments do not all follow the same sign conventions as
the rotor system forces and moments. Figure 2-3 depicts the axes and positive
sense of rotation for both systems. The X forward, Y right and Z down system
that is usually encountered in stability and control analysis has not been used.
An axis system similar to what is used in analyzing a rotor is used instead.
Therefore, for both the hub and fuselage the Z axis is positive up, the Y axis is

positive to the right, and the X axis is positive aft.

¢fuselage

(bhub X

Figure 2-3: Hub and fuselage aHis systems.

This unconventional axis system creates confusion in the definition of
the rotations. Pitch, 8, remains positive in the nose up direction as per
convention. Roll, ¢, and yaw, y, are opposite of convention leading to a roll |
that is positive left wing down, and a yaw that is positive nose left. To relieve
some of this confusion, the definition of the fuselage roll angle is reversed to
positive right wing down, per convention, but the yaw remains

unconventional throughout the program and is corrected only in the final
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integration and plotting of the output. This change of sign for the roll angle
does help in relieving some confusion, but it adds the side-effect of creating a
left-handed system for the fuselage calculations. This can create problems in
the definition of terms like products of inertia so careful consideration must
be taken. Care must also be taken in transmitting rolling motion from the
rotor system to the fuselage.

These six rotor degrees of freedom and the six fuselage degrees of
freedom makeup the twelve generalized coordinates for the Lagrangian

formulation. They are collected into a single vector, Q,

Q = [ dp, a1, bl/ CO/ Yl/ 'YZ: e/ ¢1 W: y/ X, Z ]T~ (22'3)

Typical flight controls used by the helicopter pilot (collective stick,
cyclic stick, and directional pedals) create three inputs to the main rotor
system and one to the tail rotor. For the main rotor, they are the collective
pitch of all the blades 65, the longitudinal cyclic pitch of the blades Bjs, and
the lateral cyclic pitch of the blades Ajs. As with the flap and lag equations,
the blade pitch (feathering) variables used in this program are in standard

NACA notation,
8 = 0, - A1s cos(¥) - Bys sin(¥). (2.24)

As shown in figure 2-4, the lateral cyclic pitch, A, is positive right side down
with the blade pitch at its most negative angle over the tail (¢ = 0°). The
longitudinal cyclic pitch, Bis is positive nose down with the blade pitch at its
most positive angle at ¥ = 270°. The input to the tail rotor is the value of

collective pitch, 61x.
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Elade Pitch Blade Pitch
Swashplate b —_—

— I —

T~ :A:1s B1.'.=;
Oi

Swashplate
B ——

-
P

Figure 2-4: Lateral and longitudinal
cyclic input to the rotor.

This model was originally designed for hover and level forward flight.

In these cases, the value of collective pitch to the main rotor is not varied

- from a steady state trim value. Therefore, the constant trim value of 8, is
provided to the model in the trim input file, and the system needs only three

time varying inputs: the lateral cyclic pitch, the longitudinal cyclic pitch, and

- the tail rotor collective pitch. These values are contained in a vector of

inputs, U,
U=[Ajs Bis, v 1™ (2.2-5)

With the generalized coordinates and inputs defined, the nonlinear

equations of motion can be developed using the Lagrangian approach. This

N results in a series of equations where the second time derivative of each
generalized coordinate is expressed as a function of the first time derivative of

the generalized coordinates, the generalized coordinates themselves, the

- inputs and time,
Q=F(Q.QU,T). (2.2+6)

However, while introducing the multi-blade coordinates, which transformed
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the rotating rotor system to the non-rotating frame, if the higher harmonic
terms are omitted, a constant coefficient approximation to equation 2.2-6 is

obtained,

O=F(Q, Q,U). (2.2-7)

This is still a nonlinear representation of the Lagrangian formulated system,

but it has constant coefficients.

2.3 Linearization of the System

This nonlinear system is then linearized using a perturbation analysis.
In this sense, one assumes the twelve generalized coordinates, Qi(t), and the
three inputs, Uj(t), can be defined as the sum of a steady state value ( QipOr
Uio ) and a time dependent perturbation around that steady state value (AQ;(D)

or AU;(t) ),

Qi(t) = Qi + AQ;(D), (2.3-1)
U;(t) = Ujo + AU; (D). (2.3-2)

These new steady state plus perturbation terms are substituted into equation
2.2-7. Since the perturbation values are considered small (<<1), all terms
containing squares of perturbation values are neglected. The perturbation
quantities are then temporarily set equal to zero to obtain the steady-state
values of the generalized coordinates and inputs. Since these steady-state
values do not cause changes in the motion of the aircraft (by definition) they
can be subtracted out. This leaves a second order, linear dynamic equation of

motion for the helicopter,
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M(Qo,Ug) AQ + C(Qo,Uo) AQ + K(Qo,Uo) AQ = F(Qo,Uy) AU (2.3-3)

where M is a "generalized mass” matrix, C is a "generalized damping" matrix,
K is a "generalized spring” matrix and F is the "forcing" matrix. Each is
dependent on the constant, steady-state trim values of Qo and U, and are
therefore constant matrices.

Due to the linearization of the system, these generalized matrices (C, K
and F) can be treated as the superposition of the effects from individual
components of the model as they are affected by the perturbations. This
systematic modular approach permits the effects of any changes to the model
to be observed directly on the system matrices. Table 1 indicates the physical
interprétation of the parts of the C and K matrices. The total value of the

matrix is the superposition (summation) of each term (i.e. K=K1+K2+..).

Table 1: Physical interpretation of the parts of
the generalized matrices C and K.

C1 = Mechanical Damping K1 = Mechanical Spring

C2 = Aerodynamic Damping K2 = Rerodynamic Spring

C3 = (not used) K3 = Hinge and Elastic Coupling
C4 = Body Rerodynamic Damping{ K4 = Body Aerodynamic Spring
C5 = Vertical " =il Damping KS = Vertical Tail Spring

C6 = Horizontal Tail Damping K6 = Horizontal Tail Spring

C? = Tail Botor Damping K? = Tail Rotor Spring

The mass matrix, M, is treated slightly differently and contains the values of
the inertias or masses required for the terms in the equations of motion. For
example, the diagonal elements are basically the blade inertia (Ip) for the rotor

degrees of freedom and the fuselage moments of inertia (Iyy, Ixx, and Izz) or
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the fuselage mass (myfys) for the fuselage degrees of freedom. Other off-
diagonal elements correspond similarly.

Because the values of the M, C, K, and F matrices are dependent on the
trim condition (Qo,Up), it is important that the correct trim values are used in
developing these matrices. There should not, however, be a strong
dependence on the precise accuracy of the trim value. If a small change in
one of the trim values makes a large change in the final output, then it would
indicate difficulties with the linearization, and the validity of the model
would have to be reviewed.

For clarity, equation 2.3-3 can be rewritten using a small letter q to
represent the term AQ and a small u to represent AU. This simplifies the

equation to
M+Cq+Kq=Fu. (2.34)

Whereas the perturbations in generalized coordinates and inputs will be
written q = [ag,a1,b1,80,Y1,Y2,8,0,¥,y,x,2]T and u = [A1s,B15,01r]", for the
remainder of this report, it must be remembered that these are the values of
the perturbation from the steady-state trim value, and not absolute values of

the generalized coordinates or the absolute values of the inputs.

2.4 State-Space Representation
To further provide analytical simplicity, and to create a basis for
development of feedback control systems, the system of second-order linear

equations can be combined into a first order, state-space representation,

x=Ax+Bu (2.4-1)
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This change is accomplished by noting the identity q = q, and manipulating

equation 2.3-4 to read,

q-= q (2.4-2a)
q=-M'Kq -M! Cq + M'Fu (2.4-2b)

Then substituting x = [ q, q]7, maintaining u = [A15,B15,6: I", and wfiting in

matrix form, the state-space representation is defined,

. 0 1 0
x=[_M-1K -M1C ]x+[M_]F ]u (2.4-3)

This conversion results in a state vector, x, that consists of 24 states: the
perturbations in the twelve generalized coordinates and their first time
derivatives. This state-space form of the linearized model can now be
conveniently used for eigenvalue analysis of the system (the eigenvalues of
the matrix A) or for integration over time with a specified, time varying
input u.

As an example, figure 2-5 shows the integration of equation 2.4-3 for a
flight test input as calculated by MacDonald [11]. This graph of roll rate, which
is a response to a one inch right lateral cydlic input in a hover, plots both the
flight test roll rate and the basic simulation model output. The effects of
dynamic inflow are not accounted for at this point. The model obviously
reproduces the general shape of the aircraft response, although a large

discrepancy in the maximum value is evident.
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Figure 2-5: Roll response of the 24 state model, without
dynamic inflow effects, to a 1" lateral cyclic
input in a hover (REFA Test 201).

2.5 The Quasi-Static Formulation

As discussed earlier, a quasi-static formulation that neglects the rotor
dynamics is not capable of modeling the higher order, short period dynamics
and can therefore cause instabilities in feedback control laws that may be
developed. However, the quasi-static solution developed from a full order
model does retain many of the important characteristics of the full system
transient response. By having a reduced order (from 24 to 12), it also provides
a reduction in the complexity of the model and a subsequent improvement in
the physical insight that can be gained. This is especially evident when the
quasi-static system response can be compared to the full order response.

MacDonald developed a quasi-static formulation from the full order
model that provides these benefits. The simplified model is developed by
noting that the rotor system response is much faster than the fuselage
response. The assumption is made, therefore, that in terms of the time frame

of the fuselage, an input to the rotor system causes the rotor to achieve its
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new equilibrium position instantaneously.
Mathematically, this is achieved by first splitting the twelve
generalized coordinates into two vectors: the body degrees of freedom, qb, and

the rotor degrees of freedom, qr,

qb=106,0,v,y,x,z]T and qr=[ao a1, b1, L Y1, 2I". (2.5-1)

The M, C, K, and F matrices can then be partitioned, and the equations of

motion rewritten as
M1 Mp || & CiiCn2 |l Kii K || & Fq
[le Mzz}{ C-J +[C21 Cx i U KnKn|l g |TLF2]Y (25-2)

Setting the rotor system partitions of the M and C matrices, M12, M2, Cj2, and
C22 equal to zero and manipulating the results gives an algebraic equation for

the rotor states,
qr=-Medb-Ceqp-Keqp + FEU (2.5-3)

where the subscript E denotes the effective matrices as computed in terms of
the partitioned matrices of equation 2.5-2. Finally, setting qr and qr equal to
zero, since we are assuming that the change in qris instantaneous, and
substituting equation 2.5-3 back into 2.5-2 we are able to write the quasi-static

equations of motion in terms of a second order, linear equation in qp,

Mqdh+Cogp+Koqp=FQu. (2.54)

In the same manner as section 2.4, equation 2.5-4 can be converted into
a convenient state space form. The resultant system is of order 12 (6 fuselage

degrees of freedom and their first time derivatives), and this simplification
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can aide in the understanding of the system response.

The response of the quasi-static model to the same right lateral input is
shown in figure 2-6 along with the response of the 24 state model. In this
case, the quasi-static response includes the effects of dynamic inflow as
discussed in the next section. Although the overall roll rate response in this
reduced order model is different from the basic full order model, the same

initial roll acceleration is displayed. It is interesting to note that due to the
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Figure 2-6: Roll response of the 12 state model, with
dynamic inflow effects, to a 1" lateral cyclic
input in @ hover (REFR Test 201).

"instantaneous" effects of the rotor system, the fuselage acceleration occurs
slightly earlier than with the 24 state model. The lower peak indicates an
increased roll damping as a side-effect of the reduction in model order and
inclusion of the dynamic inflow effects. The smoothness of the model
response curve is an indication of the lack of higher order rotor response

modes which cause the slight oscillations noted in the flight test curve.
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2.6 Dynamic Inflow Modeling
The unsteady aerodynamics of the rotor environment does have a
significant impact on the response of the system so they need to be included
in the model in order to accurately replicate the response of the aircraft.
These aerodynamics can be modeled using simple models based on the
defihition of certain inflow parameters that represent the unsteady wake-
induced flow through the rotor disk. As graphically defined in figure 2-7,
these parameters include a steady state inflow, v, a cosine harmonic inflow

coefficient, v¢ , and a sine harmonic inflow coefficient, vs. The harmonic

¥=180° \p=o° -Vs - \*,
v 1 J 1 l Y= 27o° ‘ ~ ‘
| :
-v 1 \*\A\ ‘y__.oo
¥=180° R

Figure 2-7: Dynamic inflow components.

components are assumed to vary linearly with radius, r. Mathematically, the

total dynamic inflow is the sum of these terms,
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= Vg + Ve T cos(¥) + v 1 sin(¥). (2.6-1)

To model the dynamic inflow in the linearized equations of motion a

term, -Lv, is added to account for the unsteady aerodynamics,
Mg+Cq+Kq-Lv=Fu (2.6-2)

v is the vector of the steady state inflow and the two harmonics. The
dynamics of the inflow itself are included as an additional first order

differential equation,
v=D.v+DB1q+DB2q+DFu (2.6-3)

To convert the full order model with the dynamic inflow, to the state
space representation, the same procedure is used as in section 2.4, but
equation 2.6-3 is included with equations 2.4-2a and 2.4-2b in the formulation.

This gives a slightly more complicated A and B matrix,

0 I 0 0
A=! -M-1IK -M-1C -L and B=| M'IF |, (2.6-4)
DB, DB, D¢ DF

for the augmented state variable, x = [ q, §, v 7, which now is a vector of 27
states.

Inclusion of the unsteady aerodynamic effects into the full order model
improves the response substantially. Figure 2-8 shows that the roll response
of the model to the lateral cyclic input nearly coincides with the flight test
data. The acceleration and damping have very good correlation with the
flight test, and some higher order rotor mode oscillations are present. The

response shows a great improvement over the 24 state or 12 state models.
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Figure 2-8: Roll response of the full 27 state model, with
dynamic inflow effects, to a 1" lateral cyclic
input in @ hover (REFA Test 201).

2.7 Rotor Wake Effects On The Tail

Wind tunnel tests have shown that the rotor wake has a large
influence on the aerodynamics of the tail rotor and tail surfaces in forward
flight. This influence arises from the variable downwash, sidewash, and
forwardwash components of the rotor wake. Zhao, Curtiss and Quackenbush
[13 & 14} found that modeling of helicopter transient response in forward
flight is very sensitive to the treatment of the effects of the main rotor wake
on the tail.

A vortex sheet, which is a continuous surface of vorticity, is formed by
the vortices leaving the trailing edge of the main rotor blades. This vortex |
sheet forms the rotor wake. Application of the Biot-Savart law allows
induced velocities to be calculated from this vortex sheet, and from these
velocities, a rotor flow field can be developed. As the helicopter changes

attitude, the angle of attack or sideslip will alter the position of the tail in this
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flow field, thereby changing the aerodynamic forces and moments acting on
the vertical tail, horizontal tail and tail rotor.

For this model, an off-line program is used to calculate these effects.
Linearized derivatives are developed that model the change in the flow field
with position. These values are then fed to the main program via the trim
input file at the beginning of calculation and used to modify the system
equations as necessary. The flexibility to input these wake effects, instead of
having them coded in the main program, allows various simple or

complicated models of the rotor wake to be used and compared.

2.8 Benefits Of Analytic Linearization and the Trim Input File

This model provides a unique basis to study sensitivities of the
helicopter to variations in its parameters due to its having been analytically
developed and linearized using the symbolic computer languages. It is this
linearization that gives the model many advantages over other existing
linearized models. These other models use numerical linearizations of the
nonlinear equations about a set of flight conditions. Thus, the entire model,
and not just the solution, would be fully dependent on the numerical value
of the flight condition. It would not be possible to individually vary a single
term of the nonlinear equation because these terms would be determined as
part of the complete solution. For example, with the numerically linearized
models, it would not be possible to change the steady state value of rotor
coning in order observe the effect on the helicopter response or the
eigenvalue analysis. The coning angle would be directly calculated from
initial values of the flight condition (velocity, weight, air density, etc.) and

would not be available to be changed directly by the dynamicist. The
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analytically linearized model, however, does provide the ability to do this
type of sensitivity analysis.

The model studied in this research uses a data file to input the required
information to the mathematical model. This trim input file includes
several types of information. One type is the physical dimensions of the
helicopter such as main rotor diameter, blade twist, hinge offset distance,
shaft tilt, vertical tail size and sweep, and tail rotor position. Additional
physical characteristics that are input in the trim input file are data
concerning the aerodynamics of the particular helicopter. These include
main and tail rotor lift curve slopes, drag area, fuselage lift curve slope, and
fuselage pitching moment slope. These values can be derived from fuselage
wind tunnel data. Then the trim flight condition is input which includes
values such as air density, weight, speed, and center of gravity (c.g.) position
but also includes the trim values of main and tail rotor collective pitch, rotor
speed, and body angle of attack. Much of this type of information comes
directly from the flight test data. Other values, calculated off-line, are also
included, like average induced flow for the tail and main rotors, wake effects
on the tail surfaces, steady state rotor coning, and steady state blade lag.

Thus, modification of the trim input file allows the dynamicist to take
full advantage of this analytically linearized model of the helicopter.
Sensitivity of the aircraft (or the model) to the various parameters and
conditions can be studied in isolation from other variations, and thereby

greater insight and physical understanding can be gained.



CHAPTER1II
VALIDATION OF THE MODEL WITH FLIGHT TEST

Any complex mathematical model of a dynamic system, especially one
in which simplifying assumptions have been made, must be correlated with
experiment to validate the accuracy of the model. To prove the validity of
this analytically linearized model, it had to be correlated with actual
helicopter responses.

In 1982 a flight test program was conducted with an early production
UH-60A Black Hawk helicopter for the precise purpose of validating
mathematical models [10]. The very high-quality step-input data that was
developed in this study was used to validate other earlier simulation models
of the Black Hawk. This data was made available to Princeton University and
subsequently used to validate the linearized model studied in this research.
Because the data had been correlated with other simulations, the added

benefit of comparison with other mathematical models was available.

3.1 The UH-60A Black Hawk Helicopter

The UH-60A Black Hawk is a utility helicopter developed by Sikorsky
for the Army under the Utility Tactical Transport Aircraft System (UTTAS)
program. This medium sized helicopter is designed to carry 11 combat
equipped troops and a crew of three. The twin-engine aircraft has a single
main rotor and a canted tail rotor. A moveable horizontal stabilator is located

on the lower portion of the tail pylon near the non-retractable tail wheel.
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There are also two non-retractable main landing wheels mounted forward on
the fuselage. Figure 3-1 shows the general external configuration of the Black
Hawk helicopter. Further information on the helicopter structural and

aerodynamic properties are given in reference [15].

Figure 3-1: UR-60A Black Hawk helicopter.

The main rotor consists of four fully-articulated titanium/fiberglass
blades which are retained by a flexible elastomeric bearing in a forged
titanium hub. The elastomeric bearing, located at an offset of 1.25 feet from
the shaft center, provides for pitch change as well as serving as the hinge for
blade flap and lag. A conventional hydraulic damper acts to increase lag
damping.

The cross-beam tail rotor with composite blades is attached to the right
side of the tail pylon. It is a bearingless arrangement allowing for blade
bending and pitch change solely through the flexibility built into the
composite material of the blades. In addition, there is a 35 degree 83 hinge
built into the blades that allows for a decrease in blade pitch with an increase
in coning. This acts to reduce the blade flapping that occurs as a function of

speed. The tail rotor is canted 20 degrees to provide 2.5 percent of total aircraft
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lift in a hover, which also allows for greater aft center of gravity (c.g.) travel.
An adverse side-effect of the canted tail rotor is that it adds additional
coupling between the longitudinal and lateral motions of the aircraft.

To partially compensate for this coupling and to convert control stick
motion into rotor inputs, the flight controls are fed through a "mixing unit."
This mechanical device, made up of levers, cams and pushrods, has the
expressed purpose of combining and coupling the cyclic, collective, and yaw
inputs and providing proportional output to the main and tail rotor controls.
However, it is also designed to de-couple some of the adverse affects of the
canted tail rotor. It is important to note that the mixing unit is a mechanical
system that has been designed for a certain "typical” flight condition.
Therefore, at any other flight conditions, it will not operate optimally and
may even produce some adverse side-effects of its own. These effects are
minor but do show up in flight test responses and -therefore should be
expected in the simulation responses.

To illustrate the control mixing, the control system logic is shown in
figure 3-2. In addition to the conversion from a control position to its
corresponding input, as shown in the four bold boxes in figure 3-2, the other
mixing is also presented. Collective stick position is fed-forward to the tail
rotor pitch to counter the increased torque of a higher collective setting.
Collective stick position is also fed to the lateral cyclic pitch, Ajs, to account
for the increased thrust of the tail rotor from the previously described mixing.
This increased tail rotor thrust will create a right rolling moment, due to the
height of the tail rotor, as well as tending to "pull” the aircraft to the right.
The mixing unit counters the increase in collective with a negative Ajg, Or

left roll. A third collective mixing is to the longitudinal cyclic pitch, Bis. This
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Figure 3-2: UH-60A control system logic,
illustrating the control mixring.

mixing provides positive By, a nose down pitching moment, to counter the

effects of increased downwash on the tail from increased collective, and to

counter the tendency for the rotor to flap-back with at forward speed with
collective. Also fed to thevlongitudinal cyclic pitch, Bis, is the input from the
directional pedals. This is due to the canted tail rotor. A left pedal input will
increase the téil rotor pitch to yaw the aircraft. However, due to the 20 degree

cant, the increased pitch on the tail rotor will also provide vertical thrust

causing the tail to rise and nose to pitch down. To counter this, the mixing

unit provides negative Bys, or nose-up pitching moment.

Outside of the mixing unit, the flight control system on the UH-60A is

a redundant hydro-electrical-mechanical system. It includes three dual-stage
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main rotor servos to move the swashplate, a dual-stage tail rotor servo, a
Stability Augmentation System (SAS), a Flight Path Stability system (FPS), a
TRIM feature, and a Pitch Bias Actuator (PBA). The SAS, made up of two
independent systems (one analog and one digital), provides short-term
dynamic stability through rate damping. The FPS provides a longer term
stability to the aircraft through features such as attitude hold, heading hold
and airspeed hold. The TRIM maintains the controls at a fixed (trim)
position set by the pilot and also moves the controls in response to
commands from the FPS. The final part of the flight control system, the
Pitch Bias Actuator, is in effect a variable length control rod in the
longitudinal cyclic control system that changes the relationship between the
cyclic and the tilt of the swashplate. Due to a neutral or slightly negative static
longitudinal stgbility in the unaugmented aircraft, stabilizing at increased
airspeeds requires a slight aft movement of the cyclic. The PBA, when
operating, compensates for this effect and provides a forward stick movement
with increased airspeed while, at the same time, providing the negative (aft
stick) input to the swashplate for trim.

The large moveable horizontal tail (stabilator) is automatically
programmed to optimize the aircraft pitch attitude for any flight condition
and to improve the dynamic response of the aircraft. The incidence angle has
a range of from about 40 degrees trailing-edge-down in a hover through about
zero degrees at high forward airspeeds to about 10 degrees trailing-edge-up for
autorotative descents. The stabilator control system determines the proper
angle as a function of four input flight parameters. Variation in collective
stick position will require a modified stabilator angle to adjust for the

variation in downwash and the change in body angle of attack due to a climb



30
or descent. Airspeed feedback allows the stabilator to adjust its incidence
angle to keep aligned with the airflow. Pitch rate feedback to the stabilator
will counter, or dampen, any pitch rates. Finally, sensed lateral acceleration is
fed back to the stabilator to reduce pitching moment due to sideslip caused by

the non-uniform downwash around the tail.

3.2 USAAEFA Flight Test

The flight test data of the UH-60A, used in validating the model, was
obtained in a series of tests conducted by the U.S. Army Aviation Engineering
Flight Activity (USAAEFA) at Edwards Air Force Base in 1982 [10]. This flight
test program was originally conducted for use in the validation of the Army's
Rotorcraft Systems Integration Simulation (RSIS) for investigation of flight
control systems, augmentation systems, and displays that are being integrated
into modern helicopters. The necessarily high quality of the flight test data,
therefore, made it perfect for validation of the analytically linearized
helicopter model of this study, without requiring any modifications to the
data.

The test program explored steady state and transient responses at
various weights, c.g. positions, and velocities ranging from hover to 140
knots. The transient responses are of particular interest for this study, and
consisted of individual axis (lateral cyclic, longitudinal cyclic, directional
pedal) steps, pulses, and doublets of one inch or less in both directions. The
time histories of the control inputs, the test conditions, and the transient
responses obtained from the flight test are presented in reference [16]. The
aircraft weight was varied in order to set the thrust coefficient (Cy) values as

required by the flight test plan. Once in flight, C; was maintained at the
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specified value by increasing the altitude as fuel was expended. Also, the rotor
speed was varied as a function of temperature.

The Black Hawk helicopter used in the test program was fitted with the
test instrumentation required to vary the trim conditions and to record the
necessary data. An airspeed boom was mounted forward of the nose to
provide the actual flight airspeed of the aircraft, uncorrupted by the
downwash. Elliot Low Airspeed Sensing and Indicating Equipment (LASSIE)
was also used in the hover tests for measurement of omnidirectional low
airspeeds. A ballast cart was installed and used to maintain lateral and
longitudinal c.g. in conjunction with crossfeeding of fuel between the two
main fuel cells. Waterline (vertical) c.g. was not controlled in the testing, and
was allowed to vary. An instrumented fixture was provided by Sikorsky to
measure the three axes of blade motion: pitch, lead-lag, and flap. Reference
[10] made note of the fact that after Sikorsky initially calibrated this 